
5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 1/11

Aaron Dharna

Convex Optimization Final Project

Introduction
Typically in machine learning, learning-algorithm optimization is powered by a loss function.
Loss functions measure how well or poorly the current algorithm parameterization is classifying
(or regressing) a task and provides gradient feedback by taking the derivative of the loss with
respect to the weights/tunable-parameters of the algorithm. One standard loss function is that
of mean-squared-error:

Then, to determine how the algorithm parameters should change, one simply takes the
derivative of with repsect to the . This approach is commonly used in algorithms ranging
from logistic regression, neural networks, and many others. This work introduces Support
Vector Machines (SVMs) and their motivation, and in particular will focus on how SVMs are
actually just a convex optimization problem. The primal formualation is discussed and then from
that the Dual formulation is derived. Datasets and Matlab CVX code are provided for each case
as well as python scikit-learn code showing a population "standard" library.

(𝑥, 𝑦) = (− ()
1

𝑛∑
𝑖=1

𝑛

𝑦𝑖 𝑓𝜃 𝑥𝑖)
2

 𝜃

Support Vector Machines

Motivation
If I were to sum-up all of supervised machine learning (i.e. learning to discriminate classes) in
one idea it would: The science of finding decision boundaries when given a representative
support of the desired distributions. There are bayesian ways to do this that use probabilities
and densities, but given that density estimation can be an ill-posed problem, another method is
to directly with the decision function/boundary. To do this one creates a patermeterized family of
functions that one expects will partition the data-manifold. Then the problem becomes a search
through function-space for the "best" function (e.g. makes the fewest errors) using a loss
function to determine success for any given candidate-function. Specifically, these decision
boundaries are hyperplanes that partition the data, therefore the simplest case would be that of
linear classifiers.

Given a bunch of data in , is it possible to find a linear seperating line between the data
classes? In the vast majority of cases, the answer is no as much data simple doesn't cluster
together, or has cyclic properties to. However, that is not always true. For the sake of this, we're


2

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 2/11

going to introduce an example problem here and track it through the rest of the paper. In
particular, this work will follow the linearly seperable gaussian blobs denoted below.

Note, that when points are drawn from a uniform distribution, although they might be initial
linearlly seperable, they will quickly become inseperable by a linear classifier. Shattering is
finding a hyperplane that places all data-points of a respective class on the same side of the
plane. The minimum number of points that can be correctly classified is called the VC-
Dimension of a classifier and this area of ML has a rich theorical history. When you pass more
than three points in you are not guaranteed to be able to find a linear plane the can shatter
a set.

Now it might be reasonable to think that as the number of points sampled goes to infinity, that
problems would move towards non-seperable. And that certainly seems true when looking at
the uniform distribution. However, if there is some structure inherent in the data, then that is no
longer the case. Take for instance that the two data classes are drawn from gaussians. If the
gaussians are sufficently far apart (in mean and standard deviation), then we should be able to
find a hyerplane seperating them.

Therefore, the question becomes how do we determine a seperating hyperplane for the data,
assuming that one exists? Assuming that the data is equally dense between each class, one
might conceive of finding 2 centroids of the data to represent the two classes, and then taking
the mean of the centroids to get a point around which to rotate a hyperplane. Or one could
think about taking linear combinations of the feature variables. The statistics and ML literature
is filled with ways of determining hyperplanes. However, they lack a manner of determing a best
hyperplane. Below is a classifier trained on the data. While this clearly does a very good
job, the points right at the boundary are missclassified. Therefore good intuition might be, if we
can classify the most difficult-to-get-right points, then the remainder will fall out naturally.

,ℝ
2

𝐥𝐢𝐧𝐞𝐚𝐫

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 3/11

For example, the four hyperplanes below, each do a decent job of seperating the two classes of
problems, and there might even be one of them that achieves the best accuracy at the job, but
it is easy to image different hyperplanes that achieve the same accuracy but are not the same
plane. As a concrete example, what makes the red line better than the blue line or vice-versa?
You could use the loss function defined above to measure the accuracy of each seperating
hyperplane, but let's just say that they both achieve the same accuracy? How would one
differentiate between them then? One might read that and think, "okay, that's just a distinction
without a difference," but it turns out we can come up with a rigerous way of defining best using
Support Vector Machines.

Support Vector Machines are one method of determining a "best" hyperplane. Rather than
simply finding one boundary plane, an SVM will find three parallel boundary planes
parameterized by one normal vector, w and offest b. Specifically:

Then, the SVM algorithm will continually edit the weights of w and b until the margin defined by
the equation maximize the number of correctly classified data-points as
defined using the Loss function (e.g. mean squared error as seen in the intro). These margin
equations give us the classification boundaries. Points where receive
classification of 1 while receive classification of -1.

(𝑥) =𝑓𝜃








𝑥 + 𝑏 = 1𝑤𝑇

𝑥 + 𝑏 = 0𝑤𝑇

𝑥 + 𝑏 = −1𝑤𝑇

𝑥 + 𝑏 = + − 1𝑤𝑇

𝑥 + 𝑏 ≥ 1𝑤𝑇

𝑥 + 𝑏 ≤ −1𝑤𝑇

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 4/11

Image citation:
https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and
(https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and

Primal Form
Of course, we haven't yet touched upon how one would actually compute such a set of
boundary planes. We can define an SVM using the language of convex optimzation.
Specifically, let us begin with defining the primal optimization problem as such:

We need to verify that the problem is a convex problem. Well, taking a norm is convex,
squaring is convex, and scaling by a constant factor is convex. Therefore the composition of
these functions is convex. The inequality is a linear inequality, therefore that is convex as well.
Therefore, we have met the requirments for defining a Linear Programming problem!

So, let's just say we have labeled data {(,) | } where x is the data
and y is the class label {+1, -1}. Furthermore, let's say we also have a seperating hyperplane
for these points defined by a normal vector , and an intercept . Points, q, that lie on the
seperating hyperplane, satisfy the equation .

minimize
||𝑤||2

2

subject to

(⋅ 𝑤 + 𝑏 − 1) ≥ 0∀𝑖𝑦𝑖 𝑥𝑖

𝑥𝑖 𝑦𝑖 𝑖 ∈ [0, 𝑘], 𝑘 ∈ ℕ ∈ ℝ
𝑁

𝑤 𝑏

𝑤 ⋅ 𝑞 + 𝑏 = 0

https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and_SVMs.pdf

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 5/11

Let be the shortest distance from the sepearting hyperplane to the closest
positively (or negatively) labeled point. We can then define the margin as . An SVM
therefore looks for the seperating hyperplane with the largest margin. We have control over the
placement of this margin by varying the parameters of our normal vector and the intercept.
Note that b, is a free variable and there is no constraint as to it being positive or negative.

By adding these two inqualities together you get:

Now, consider a point that induces equality in . This point, p, lies directly on the
hyperplane where w is normal to the hyperplane. Furthermore, we can
determine that the length to the origin from this chosen point is . Similarly there is another

point, q, that exists on the hyperplane. This secondary point has distance to
the origin . Therefore and the margin is therefore . Therefore we

can find a pair of hyperplanes that give a maximum margin by minimizing . This value
becomes the Primal problem defined as:

Dual Form
To get the dual form, we take the primal form and create the Lagrangian of the problem.
Creating the Lagrangian involves taking a linear combination of the objective function with
weighted constraints. We call these weights lagrange multipliers.

We want to minimize with respect to w and b. To do that, we take the derivative of the
Langrangian and set it to zero to find the critical points for w and b.

 and 𝑑− 𝑑+

+𝑑− 𝑑+

⋅ 𝑤 + 𝑏 ≥ 1∀𝑥𝑖 𝑦𝑖

⋅ 𝑤 + 𝑏 ≤ −1∀𝑥𝑖 𝑦𝑖

(⋅ 𝑤 + 𝑏 − 1) ≥ 0∀𝑦𝑖 𝑥𝑖 𝑦𝑖

⋅ 𝑤 + 𝑏 ≥ 1𝑥𝑖
⋅ 𝑤 + 𝑏 = 1𝑥𝑖

|1−𝑏|

||𝑤||

⋅ 𝑤 + 𝑏 = −1𝑥𝑖
|−1−𝑏|

||𝑤||
= =𝑑− 𝑑+

1

||𝑤||

2

||𝑤||

||𝑤||2

2

minimize
||𝑤||2

2
subject to

(⋅ 𝑤 + 𝑏 − 1) ≥ 0∀𝑖𝑦𝑖 𝑥𝑖

(𝑥, 𝑦,𝑤, 𝑏, 𝛼) = − (⋅ 𝑤 + 𝑏) +inf
𝑤,𝑏

||𝑤||2

2 ∑
𝑖=1

𝑙

𝛼𝑖𝑦𝑖 𝑥𝑖 ∑
𝑖=1

𝑙

𝛼𝑖



(𝑥, 𝑦,𝑤, 𝑏, 𝛼) = 𝑤 − = 0 → =
w ∑

𝑖=1

𝑙

𝛼𝑖𝑦𝑖𝑥𝑖 𝑤⋆ ∑
𝑖=1

𝑙

𝛼𝑖𝑦𝑖𝑥𝑖

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 6/11

With our constraints defined, we can now plug these back into the Lagrandian for w and b and
we get:

This therefore implies the dual form of:

Note, when I tried switching the minimize to a maximize, CVX threw an error. This will be
repeated in the correct section of the derivation once we reach the matlab implementation.

Disciplined convex programming error:
 Cannot maximize a(n) convex expression.

(𝑥, 𝑦,𝑤, 𝑏, 𝛼) = = 0 → = = 0b ∑
𝑖=1

𝑙

𝛼𝑖𝑦𝑖 𝑏⋆ ∑
𝑖=1

𝑙

𝛼𝑖𝑦𝑖

(𝑥, 𝑦, 𝛼) = − +
1

2 ∑
𝑖,𝑗=1

𝑙

𝛼𝑖𝛼𝑗𝑦𝑗𝑦𝑖𝑥
𝑇
𝑗 𝑥𝑗 ∑

𝑖=1

𝑙

𝛼𝑖

minimize − +
1

2 ∑
𝑖,𝑗=1

𝑙

𝛼𝑖𝛼𝑗𝑦𝑗𝑦𝑖𝑥
𝑇
𝑗 𝑥𝑗 ∑

𝑖=1

𝑙

𝛼𝑖

subject to = 0∑
𝑖

𝛼𝑖𝑦𝑖

Using Sci-kit Learn's functionality we can call an implemented version of SVMs to classify out
points.

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 7/11

As we can see, the SVM has managed to fix the errors that the linear classifier was unable to
get right.

Let us begin with an implementation of the primal form of this optimization problem in matlab's
CVX.

N = size(data, 1);
M = size(data, 2);

cvx_begin

 variables w(M) b
 minimize 0.5 * sum(square(w))
 subject to
 labels' .* ((data * w) + b) >= 1;

cvx_end

This results in the following hyperplane being found:

Next, let us take a moment to look at the boundary but also the support-vectors for this set.

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 8/11

The Dual form looks like this:

N = size(pts, 1);
M = size(pts, 2);

K = (labels * labels') .* (pts * pts');
e = ones (N,1); % used to make the sum alpha_i into a dot-product

cvx_begin

 variable a(N)
 dual variables de dp
 minimize -1/2 * transpose(a) * K * a + transpose(e) * a
 subject to
 de : labels * a == 0;
 dp : a >= 0;
cvx_end

% Note, when I tried switching the minimize to a maximize, CVX threw
an error.
% Disciplined convex programming error:
% Cannot maximize a(n) convex expression.

Note that this has been placed into the form of a quadratic program subject to linear
constriants:

minimize 𝑄𝑥 +𝑥
𝑇

∑
𝑖

𝛼𝑖

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 9/11

Now, let us say that we have points that are linearly seperable. How might we got about
defining hyperplanes for those? For this, let us return to the primal form. In the primal
formulation of the SVMs, the algorithm either gets points correct or it does not get them correct.
What if we were to instead add in slack variables? So, this would allow us to say: "you almost
got this right." For this, let us introduce two new variables, and C.

First, we need to redefine our hyperplane equations above:

Image citation:
https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and
(https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and

When introducing these slack variables into the optimization, we are going to go one step
further, and place a hyperparameter as a weight on their sum. If C is zero, then we recover
the original hard-boundary SVM problem forumation. Intuitively, C is going to be our "how much
do we want to punish missclassification" parameter.

𝑎𝑙𝑚𝑜𝑠𝑡

𝜖

⋅ 𝑤 + 𝑏 ≥ 1 − ∀ ∈ +𝑥𝑖 𝜖𝑖 𝑦𝑖

⋅ 𝑤 + 𝑏 ≤ −1 + ∀ ∈ −𝑥𝑖 𝜖𝑖 𝑦𝑖

𝐶

minimize − 𝐶(
||𝑤||2

2 ∑
𝑖

𝜖𝑖)
𝑘

subject to

(⋅ 𝑤 + 𝑏 − 1) ≥ 0𝑦𝑖 𝑥𝑖

https://storage.googleapis.com/supplemental_media/udacityu/5422370632/Kernel_Methods_and_SVMs.pdf

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 10/11

When k = 1 or k = 2, this problem is a convex optimization problem. Specifically when k = 1, this
is a quadratic programming problem. Furthermore, when k = 1, nor their Langrange
multipliers appear in the dual problem. Specifically, the primal Langrangian is:

Note, that are langrange multipliers that enforce positivity on . Taking derivaties of w and b
again, when k = 1, will result in the original problem coming back as our dual optimization
problem, but now with a limit on the values can take on.

𝜖𝑖

 = + 𝐶 − [(⋅ 𝑤 + 𝑏) − 1 +] − 𝜇
||𝑤||2

2 ∑
𝑖

𝜖𝑖 ∑
𝑖

𝛼𝑖 𝑦𝑖 𝑥𝑖 𝜖𝑖 ∑
𝑖

𝜖𝑖

𝜇𝑖 𝜖

𝛼𝑖

minimize − +
1

2 ∑
𝑖,𝑗=1

𝑙

𝛼𝑖𝛼𝑗𝑦𝑗𝑦𝑖𝑥
𝑇
𝑗 𝑥𝑗 ∑

𝑖=1

𝑙

𝛼𝑖

subject to = 0∑
𝑖

𝛼𝑖𝑦𝑖

0 ≤ ≤ 𝐶𝛼𝑖

Quick Aside:

Given data in the form of {(,) | }, to get more flexible kernels into this
framework, we can move away from the dot product of: and try more expressive
combinations of the data. The only constraint is that we need to be able to take the kernel by
taking dot products of the data. Other standard kernels are:

Then one just replaces everywhere in the problem forumation of with

𝑥𝑖 𝑦𝑖 𝑖 ∈ [0, 𝑘], 𝑘 ∈ ℕ

𝑥 ⋅ 𝑥

𝐾(,) = (⋅ + 1 ← polynomial kernel𝑥𝑖 𝑥𝑗 𝑥𝑖 𝑥𝑗)𝑃

𝐾(,) = ← gaussian kernel𝑥𝑖 𝑥𝑗 𝑒
−|| − |𝑥𝑖 𝑥𝑗 |

2

2𝜎2

⋅𝑥𝑖 𝑥𝑗 𝐾(,)𝑥𝑖 𝑥𝑗

Primary Citations:

- https://storage.googleapis.com/supplemental_media/udacityu/5422370
632/Kernel_Methods_and_SVMs.pdf
- https://www.di.ens.fr/~mallat/papiers/svmtotirial.pdf
- Boyd's Convex Optimization

5/12/2020 svm_derivation - Jupyter Notebook

localhost:8888/notebooks/project/svm_derivation.ipynb 11/11

