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Abstract—PINSKY is a system for open-ended learning
through neuroevolution in game-based domains. It builds on
the Paired Open-Ended Trailblazer (POET) system, which orig-
inally explored learning and environment generation for bipedal
walkers, and adapts it to games in the General Video Game
AI (GVGAI) system. Previous work showed that by co-evolving
levels and neural network policies, levels could be found for which
successful policies could not be created via optimization alone.
Studied in the realm of Artificial Life as a potentially open-ended
alternative to gradient-based fitness, minimal criteria (MC)-based
selection helps foster diversity in evolutionary populations. The
main question addressed by this paper is how the open-ended
learning actually works, focusing in particular on the role of
transfer of policies from one evolutionary branch (“species”)
to another. We analyze the dynamics of the system through
creating phylogenetic trees, analyzing evolutionary trajectories
of policies, and temporally breaking down transfers according to
species type. Furthermore, we analyze the impact of the minimal
criterion on generated level diversity and inter-species transfer.
The most insightful finding is that inter-species transfer, while
rare, is crucial to the system’s success.

Index Terms—Transfer learning, neural networks, curriculum
learning

I. INTRODUCTION

OPEN-ended learning is a long-standing goal of AI re-
search, and is arguably one of the more promising ap-

proaches toward achieving more general artificial intelligence.
The goal in open-ended learning is to make agents learn not
just to perform a given task, but to continually learn a complex
repertoire that is appropriate across a growing set of situations.
In contrast, much current reinforcement learning (RL) and
evolutionary computation research focuses on learning narrow
solutions to specific problems, which risks significant overfit-
ting and requires human designers to specify problems and
rewards, limiting the long-term learning potential.

Paired Open-Ended Trailblazer (POET) [1] is a recently-
proposed method for open-ended learning. This method keeps
a meta-population of agent-environment pairs. Agents are
trained to perform well on their environments, and new envi-
ronments are evolved so as to challenge the agents. POET is
noteworthy because it generates emergent curricula of diverse
biped walking challenges from scratch, i.e. with no human
input. Intermittently, agents are tested on other generated
environments than their own, and can transfer there (replacing
the agent that was originally paired with the environment).
Experiments in [2] and [3] showed that standard RL and

evolutionary computation optimization algorithms were unable
to be trained to solve complex POET-generated environments
without this agent transfer mechanism.

The setting used for the original POET environment was at
the same time quite limiting and lacking certain complications
typical of learning in other settings. In particular, the dense
reward function for the walker agents makes it easy to learn
good behaviors, and most walker environments that can be
generated are also solvable by agents. Therefore PINSKY (in-
troduced below) adapts POET to a more complex domain and
reward-sparse setting, which would enable harder problems to
be created and which allow for more diverse environments.

The new system utilizes the General Video Game AI (GV-
GAI) system [4], and in particular uses variants of GVGAI’s
Zelda game, namely Deterministic Zelda (dZelda). Zelda, as
used here, is a 2D game about maze navigation and combat.
In order to make the POET loop work, several modifications
(described later in this paper) had to be made. Importantly,
agents based on Monte Carlo Tree Search (MCTS) [5] were
needed to verify the solvability of environments, as environ-
ments could be generated that would not be solvable by any
agents, in striking contrast to the walker environment.

We call this new system PINSKY – POET-Inspired Neu-
roevolutionary System for Kreativity.1 A previous conference
paper [2], which this paper is an extension of and follow-up
to, demonstrates that basic functioning of the PINSKY system.
This paper investigates how PINSKY works. Generated levels
are speciated into distinct clusters, and then agent transfer
dynamics are analyzed over multiple runs, focusing on transfer
between species. Furthermore, this paper investigates what
happens when the MCTS-based solvability test is removed.
Here, the hypothesis is that not checking for solvability would
a) allow unsolvable environments to swamp the system and b)
collapse the generated level diversity thereby inhibiting inter-
species transfer and eventually grinding progress to a halt.

Understanding POET’s transfer mechanism in an evolu-
tionary context may provide insight into transfer mechanisms
in gradient-based machine learning. Do individuals tend to
transfer into very unfamiliar environments, or only those that
are similar to the environment on which a given agent has
already proven successful? Do individuals only transfer to
tasks of increasing complexity, or can they transfer back and
forth between simple and complex tasks in order to find agents

1Code: https://tinyurl.com/y42x54pg
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that solve difficult tasks? Answering these questions will likely
bring us closer to the goal of creating agents that are capable
of applying learned skills in multiple contexts. To this end,
the main contribution of this paper is an analytical framework
for studying transfer dynamics in POET-like systems.

II. RELATED WORK

This section provides an introduction to transfer and cur-
riculum learning, adversarial training, and coevolution before
introducing the POET algorithm as a coevolutionary algo-
rithm. POET-style coevolutionary algorithms provide a unique
setting to study the interactions of transfer learning with
optimization and coevolutionary dynamics on the ability to
discover curricula and high-functioning behaviors.

A. Transfer and Curriculum Learning

A popular paradigm in machine learning is transfer learning,
which rather than training from a randomly initialized model
on the target task, instead first pre-trains the model on one or
more source tasks. The idea is that shared problem structure
between the source and target tasks is captured in what the
model learns during training on the source tasks (e.g., captured
in artificial neural networks’ (ANN) weights or Gaussian
mixture models’ parameters [6]). Transfer learning exploits
this shared structure to increase performance or decrease
training time on the target task [7][8][9][10][11][12]. The hope
is that the pre-training search identifies a point on the surface
of the optimization landscape that is close to points of high
performance with respect to the target task [12][13][14].

While sub-fields of machine learning describe versions of
transfer learning particular to the paradigm, the base compo-
nents are a task ψi and model θi. Transfer learning for control
problems often defines the task ψi as a MDP Mi. This MDP
is defined by the tuple of functions that parameterize States,
Actions, Transitions, Rewards, and the discount factor (Si, Ai,
Ti,Ri, γi) [15]. Typically an MDP Mi is solved when a policy,
πθi(a|s) – a learnable model with parameterization θi mapping
states to actions – maximizes the long-term discounted sum of
rewards

∑T
k=t+1 γ

k−t−1rk [16]. An example of fine-tuning to
task ψj from task ψi is solving Mj with πθi . ψi and ψj can
differ in one or more of the five components of an MDP.

Due to the larger definition of an MDP as a task, many
different types of knowledge can be learned and transferred
between tasks. When used in RL, Q-functions (often but not
always represented as ANNs) provide information on how
valuable an action is in a given state and can be transferred to
untrained RL agents to speed up agent training [13]. Transfer-
ring knowledge (stored in DQNs) between various scenarios
in 3D environments has proven helpful for generalizing agents
to traverse unknown maps with unknown backgrounds in
the VizDoom environment [17]. If the laws that govern a
system (e.g. physical laws like gravity) are consistent, then a
learned dynamics model would conserve such knowledge even
if objectives were to change [18]. A policy indicates which
actions are potentially useful, therefore one might transplant
effective policies between tasks [12][19][20]. Alternatively,
transfer learning has been used in multi-agent settings to

transfer policies between multiple agents in a shared sim-
ulation, e.g. StarCraft II [21]. Transferring a policy into a
new task/environment for additional fine-tuning is POET’s
form of transfer learning; after POET creates a new agent-
environment pair (thereby successively altering Si in the
definition of an MDP), the agent will receive additional inner-
loop optimization to adapt its policy to the new environment
from the starting point of the parent’s behavioral policy.

Continually complexifying various aspects of an initial
simple MDP, thereby creating a regimen of tasks for the
purpose of scaffolding agent skill acquisition, is known as
curriculum learning. Specifically, Narvekar et al. define cur-
riculum learning (in RL) as learning a directed acyclic graph
of a set of MDPs [15] where the goal is to find the correct
sequencing of experience/tasks such that policy πθi(a|s) can
solve difficult tasks. This set of MDPs is often defined a priori,
or, as in POET, generated on the fly. In POET, the generated
MDP coevolves with respect to the agent performance.

B. Adversarial Training, Self-Play, and Coevolution

Called generative adversarial training by Goodfellow et al.
[22] and self-play in modern approaches in reinforcement
learning [19][23][24][25], cooperative and competitive co-
evolution are at the heart of many high-profile algorithmic
achievements [26]. Unlike traditional evolutionary systems,
in coevolutionary settings individuals are compared based on
the outcome of their interaction with other members of the
population(s) rather than only comparing each individual w.r.t.
a fixed fitness function. As a result, coevolutionary search is
a stochastic or non-stationary process [27].

Coevolution is also at the heart of an approach for discover-
ing tree-based policies and constructing feature extractors that
with minimal model complexity compete with deep-learning
based solutions to play the 49 games in the Arcade Learning
Environment (ALE) [28]. Beyond simply highly skilled solu-
tions, Kelly and Heywood discovered reusable subtrees across
multiple games inside the coevolved policies [28]. Blondie 24,
a single-population coevolutionary setup, taught itself to play
checkers competitively by evolving the weights of a fixed-
architecture ANN and evaluating performance based on how
well each agent plays against a set of opponents drawn from
the current population [26].

In two-player competitive games, self-play and coevolution
intersect when policies compete against each other to supply
data that informs the future trajectory of search [29][27]. In a
GAN the game-theoretic approach of having a generator and
discriminator that compete against each other in a zero-sum
game shows one scenario where the gradient information is
determined by interactions between a competitive population
of two [30][27]. The challenge for solving problems with
self-play or coevolution lies in finding the Nash equilibrium
such that the distributions of each population are equally
aligned. However, the subjective nature of the competition
between members of the population(s) can lead to instability as
search in coevolutionary systems is dependent on interactions
between individuals in the population [30].
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III. POET AND PINSKY

A. Paired Open-Ended Trailblazer (POET)

The POET algorithm [1][3] is a coevolutionary algorithm
for simultaneously generating and solving tasks. The approach
was first explored on the OpenAI Gym’s Hardcore Bipedal
Walker domain;2 given rangefinders and joint angle informa-
tion, agents learn gaits for walking over terrain containing
hills, stumps, and pitfalls. POET coevolves agents and terrains
through three main processes: 1) periodically generating new
offspring environments by mutating existing environments and
ensuring that new environments pass a minimal criterion (MC)
for reproduction of being neither too easy nor too hard, 2)
incrementally optimizing agents paired with generated envi-
ronments, and 3) occasionally attempting to transfer optimized
agents into other environments in the meta-population (Al-
gorithm 1). POET-style algorithms eventually create difficult
environment instances that cannot be solved by optimization
from scratch (starting from a random policy), indicating that
transfer is necessary for high-performing behaviors [1][3][2].

The reward function for biped walkers is continuous, al-
lowing “neither too easy nor to hard” (with respect to the
MC) to be defined by minimal and maximal acceptable reward
values. This binary approach to fitness, explored recently
in the context of artificial life and evolutionary robotics
[31], presents a potentially more open-ended alternative to
traditional gradient-based evolution [32][33]. After an envi-
ronment satisfies the difficulty criteria, the new environment
is paired with a copy of its parent’s paired agent. Another
important and unusual feature of POET is that it periodically
evaluates all possible pairs of agents and environments in
the meta-population, thereby revealing behaviors that can be
easily adapted to multiple environments. Between transfer
attempts, agents optimize exclusively on their paired source
environment. The best candidate agent for transfer into a level
is determined via tournament selection (Algorithm 2) based
on each agent’s zero-shot performance on each environment
where ties break in the favor of the incumbent agent. Through
incremental optimization and regular transfer of agents, POET
generates curricula and agents for biped walking.

POET’s evolutionary framing of environment generation
inherently induces the necessary directed acyclic relationship
between the initial specified level and all future levels (see
lineage structure in Figure 1) that is required to meet the
definition of curriculum learning supplied by Narvekar et al.
[15]. However, the automatic generation of new tasks via an
evolutionary generative process allows the curriculum to be
built by POET itself in an online manner that is reactive to
the minimal criterion and agent population.

B. PINSKY and Differences from POET

The POET-Inspired Neuroevolutionary System for Kreativ-
itY (PINSKY) is an adaptation of the POET algorithm from
an evolutionary robotics domain into the space of 2D Atari-
style games in the General Video Game Artificial Intelligence
(GVGAI) framework [4][34]. GVGAI provides an interface for

2https://gym.openai.com/envs/BipedalWalkerHardcore-v2/

Algorithm 1: POET-style Algorithms

1 Pair initial environment with unoptimized agent
2 while not done do // Outer Loop
3 if counter % mutationTimer == 0 then
4 Generate offspring environment-agent pairs
5 Remove too-easy and too-difficult offspring
6 if population size exceeded then
7 Remove oldest environment-agent pairs
8 end
9 end

10 Optimize for a batch of steps // Inner Loop
11 Reevaluate all optimized individuals
12 if counter % transferTimer == 0 then
13 Evaluate all agents on all environments
14 Replace incumbent agents with more successful

agents, if any exist
15 end
16 counter += 1
17 end

Algorithm 2: Tournament Update: transfer mecha-
nism. Algorithm 2 expands lines 13 and 14 of Algo-
rithm 1.

input: t: POET loop id.
P: Current meta-population of agent-env pairs.

1 E = Evaluate pj .agent in pi.environment ∀pi, pj ∈ P.
// Eij = score of pj.agent in

pi.environment
2 for pi ∈ P do

// Find pair ∈ P containing the
best agent for environment i

3 pbest = argmax(Ei)
4 if not pi == pbest then
5 Update pi.agent to pbest.agent
6 end
7 end

defining and playing games written in Video Game Descrip-
tion Language (VGDL) [35], a human-readable text language
for 2D games and levels ranging from dungeon crawlers
to platformers. Adapting POET to this new set of game
environments required a number of changes to the underlying
POET algorithm.

1) Reward Function: In POET, the reward function is both
dense (making it easy to tease out subtle differences between
agents) and well-aligned to the desired task (making the
optimization process continuously steer the agent towards im-
provement). In game environments, neither of these conditions
are necessarily met.

The RL problem of credit assignment, or determining which
actions cause the observed outcome, is hard even when the
reward function is dense. A sparse reward function further
complicates this task making games, such as the GVGAI
games Solarfox and Deterministic Zelda (dZelda), substan-
tially more difficult than the biped walker domain. The dZelda
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Fig. 1: Phylogenetic tree of the first 105 environments created by PINSKY in the first multiDoor dZelda experiment.
Black arrows denote lineage showing children environment IDs coming from parent environment IDs. Red arrows show one
step of transfer between the current agent-environment population in PINSKY. All transfer happens concurrently. Color of the
node denotes the species that the environment belongs to. Square vertices (75 to 104) are in PINSKY’s active population.

game functions similarly to Zelda (a dungeon crawler where
the agent needs to avoid/kill enemies and escape by getting
a key to the door), but the enemies greedily chase the avatar
rather than move randomly. POET uses the OpenAI ES [36]
algorithm to optimize agent’s long-term reward. PINSKY
parameterizes the inner loop optimization algorithm, and by
default uses Differential Evolution [37] to optimize a real-
valued vector of the policy weights; however, any optimization
algorithm can serve this function.3

The dZelda agent is rewarded for picking up a key, taking
it to the door (the win condition), and killing monsters.
However, the additional reward source of killing monsters
makes the reward function unaligned to the desired task; solely
killing monsters can earn more reward than winning the game,
providing a distracting reward. Furthermore, the reward can
be sparse, making the task of differentiating similar agents
increasingly difficult. For example, an agent that gets two
points for killing a monster and picking up a key is the same
in terms of reward as an agent that only kills two monsters;
therefore, the reward signal is not as clear as the biped walker
domain’s reward signal that was explored in POET.

2) Minimum Playability Criteria: POET prevents evolu-
tionary search from degenerating by requiring that evolved

3Preliminary experiments explored PINSKY combined with PPO, OpenAI’s
ES, CMA-ES and other optimization algorithms in the inner loop.

terrains satisfy a minimal criterion [31] defined a priori; the
walker has to be able to walk at least a minimum amount
(ensuring the level is not too hard) and at most a maximum
amount (ensuring the level is not too easy). In PINSKY, the
minimal criterion concept has been adapted into a playability
criterion due to the sparsity of reward in games. Specifically,
a level is too easy if a random agent can beat the level and too
hard if an MCTS agent (with the default GVGAI time limit of
40ms of planning time per action) cannot beat the level. Meth-
ods such as MCTS are limiting because having a fast forward
model is often an onerous requirement. Furthermore, even
with a fast forward model, planning algorithms like MCTS
are still subject to variable performance [38]. Nevertheless,
MCTS is robust enough to function as a simple playability
check that can solve a variety of complex levels for these
particular games.

The MC combined with age-based culling allows evolution-
ary drift to introduce new challenges (represented internally
as a direct encoding of tile positions) that the neural network
agents will adapt to. The random mutation in the MC-based
evolutionary level generator can add, remove, or move tiles
and is slightly biased towards adding new game objects
(enemies, walls, keys, and optionally additional doors) into
the levels, disrupting existing policies. Meanwhile, culling by
age provides ample time for the entire population of agents
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Argument Default Description
game dZelda GVGAI game to play
maxGameLen 500 Max actions per game
nGames 1500 Inner-loop evals per opt. step
popSize 50 Inner-loop population size
mutationTimer 25 Outer-loops before mutation step
maxChildren 8 Max offspring per mutation step
mutationRate 0.8 Parent level mutation rate
transferTimer 10 Outer-loops before transfer attempt
maxEnvs 30 Agent-env. pair meta-pop. size
numPoetLoops 5000 Max PINSKY outer-loops
alignedReward False Use built-in or aligned reward fn

TABLE I: PINSKY parameters

to attempt to solve the new task through direct optimization
of the paired agent and repeated transfer attempts of all other
agents to replace the paired agent.

3) ANN Input: The POET agent had access to rangefinder
readings and information about its own joint angles. In this
agent-centric paradigm, each action results only from local
state information. In contrast, PINSKY agent neural networks
are given a fully-observable tile map of the environment
and agent orientation (Figures 2 and 3). Moving away from
purely agent-centric network inputs potentially enables the
generalization of PINSKY to arbitrary 2D Atari-style games.

A hyperparameter list controlling various aspects of the
nested evolutionary processes of PINSKY’s meta-population
is given by Table I. Our previous experiments [2] and previous
experiments by Wang et al. [3] show that the transfer dynamics
in POET-style systems are a necessary component to the
system. However, little is known about how the transfer
dynamics help bootstrap POET-style systems.

IV. METHODOLOGY

The main contribution of this paper is an analysis of the
transfer dynamics in PINSKY. In the original POET work, the
underlying assumption is that transfer is necessary because
it allows the algorithm to reach parts of the search space that
otherwise might go unexplored by individuals with a particular
skill. That is, these individuals would need to traverse points
in the search space known as stepping stones [39] that bridge
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Fig. 2: One-hot encoded map input to the convolutional
policy network. Tiles in each GVGAI map (left) correspond
to x,y positions in the environment. In this example from
dZelda, possible tiles include (w)all, (g)oal, (a)vatar, key (+),
and monster (3). These 2D maps are then extended into a
tensor (right) where each slice denotes the presence (indicated
by color) or absence of each tile type.

gaps in the search space. The hypothesis is that without
transfer, these individuals would never otherwise reach these
stepping stones necessary for solving difficult tasks. In this
paper, we revisit this assumption by analyzing the similarity
of generated levels in PINSKY and the transfer dynamics of
agents between the levels.

A. Dataset/Environment

Data points are collected from eight runs of PINSKY,
which simultaneously generate levels and optimize agent per-
formance. Specifically, PINSKY generates: a genetic lineage
of game levels, including all agent-level pairings, the time
at which the level was first solved and who first solved it,
the time at which an agent transfers into a new environment,
and which agent was transferred. The transfer analysis is
performed on data from PINSKY runs on dZelda. In both
Zelda and dZelda, an agent spawns in a specified starting
location at the beginning of the game, and completes the level
by picking up a key and carrying it to the door. In Zelda,
the agent must also avoid/kill monsters that start from specific
positions in the level, but move randomly. dZelda removes
stochasticity from monster pathing; instead, monsters move
greedily toward the agent. The paths of the monsters depend
only upon where they originally spawn in the level and the
current position of the player agent.

The traditional reward structure of Zelda (shown below as
RD) is incremental, meaning that the agent receives small
rewards for its actions during gameplay [4]. Agents receive
a point for picking up a key, a point for taking it to the door,
and a point for every monster that it kills during play.

RD =


+1 Kills Monster
+1 Picks-up Key
+1 Opens Door

However, preliminary results show that agents are more con-
cerned with killing monsters than actually winning the game.
An alternative reward structure defined as RA,

RA =

{
1− nsteps

maxGameLen Agent reaches goal
−1 + nsteps

maxGameLen Agent Dies

focuses on quickly getting to the goal by combining the nor-
malized rollout length with a binary win/loss signal. When the

13

13
Map tensor

Compass

6
48

100

4

3

32

8

5

1

1

1

1

9
3

Fig. 3: Dual-input convolutional policy network for dZelda.
As input, the network takes both the one-hot encoded GVGAI
map and agent orientation to produce an action.
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goal is unreachable for a given policy, RA rewards those agents
who live the longest. While both schemes reward an agent’s
incremental progress in a level, RA also has components of
a binary scheme where agents are only rewarded at the end
of the game [4]. The effect for agents that optimize through
reinforcement learning is that RA is sparse with respect to
when the agent receives rewards. While a sparser reward
scheme often poses greater challenges for most RL algorithms
[40][41], game playing agents in Go [42] and StarCraft II [19]
are equipped with similarly sparse rewards. A scheme such as
RA is generalizable to any game in the GVGAI framework
and increased performance in Zelda [2].

While the primary hallmark of complexification in human-
designed game levels is the particular distribution of internal
wall segments in relation to the starting position of the agent
and the monsters, four of the eight experiments additionally
permit construction of multiple doors. In these levels, agents
are required to find a key and visit each door before complet-
ing the level. The data from experiments with this additional
constraint are called multidoor, while those with the traditional
tile constraints are called singledoor. The idea is that the extra
doors could result in levels that are more difficult to solve.

Finally, data also contains information from experiments
run to determine the impact of the minimal criterion. In
POET, viable environments must satisfy a minimal criterion
to prevent degeneration. For those experiments, the walker
satisfied these conditions if it walked a distance between
a minimum and maximum value. In PINSKY, the minimal
criterion is interpreted as playability, where a level is too easy
if a random agent completes it but too hard if an agent running
Monte Carlo Tree Search cannot (where the default time limit
per rollout is 40ms).

Data comes from eight different experiments with a combi-
nation of these experimental parameters shown below.

Experiments Reward Doors MC New
1 RD Single Yes No
2 RD Multi Yes No
2 RA Single Yes No
1 RA Multi Yes No
1 RA Single No Yes
1 RA Multi No Yes

These experiments can be grouped into two categories a)
prior experiments being brought forth for new analysis and
b) new experiments unique to this paper. Six of the PINSKY
experiments fall into the former category while two fall into
the latter.

1) New analysis of prior work: Three experiments were
run using reward function RD. Two of these runs involved
multiDoor dZelda, and the third focused on the standard
singleDoor dZelda. Three experiments were run using the
aligned reward function RA (two singleDoor dZelda and one
multiDoor dZelda).

2) New experiments: New experiments using reward RA
were run removing PINSKY’s MC (one singleDoor and
multiDoor) where it is hypothesized that the solve rate will
decrease because the diversity of level types will collapse,

thereby neutralizing inter-species transfer. Furthermore, the
entire analysis methodology (explained next) that is being
applied to each of the experiments is new to this paper.

B. Analysis Methodology
The main contribution of this paper is an analysis of the

transfer dynamics in PINSKY. Several types of analyses are
proposed to examine PINSKY runs described in Section IV-A.
This work starts from the supposition that transfer is important
[1][2][3]. While the optimization loop is where agents learn to
solve particular levels, the transfer step is where it is assumed
that agents move between environments like a curriculum that
emerges to increase overall agent performance. While transfer
is permitted every k (default=10) iterations of PINSKY, it is
not guaranteed. As in [1], the first question this analysis asks
is how many transfers occur during a run of the PINSKY
algorithms.

Three analyses are performed: Analysis Total Transfer,
Analysis To-and-From, and Analysis Blocks. Analysis Total
Transfer looks at the importance of transfer through the lens
of how often transfer occurs. The implication in POET is
that the quality of transferred knowledge is affected by the
similarity of the source and target tasks during the evolutionary
process. Rather than being speciated during evolution, levels
are clustered post-hoc through a method called cosine speci-
ation (explained below), which is inspired by novelty search
[43] and described in Algorithm 3. Analysis To-and-From
reexamines total transfer honing in on what types of transfer
are happening and when (i.e. transfer at time t from species x
to species y). Does transfer happen mostly within environment
clusters? While identical transfer curves into and out of a
cluster would suggest that most transfer occurs between the
most similar levels, Analysis Blocks transitions from an agent-
centric scale to a population-wide atemporal scale looking at
the amount of transfer into and out of each class throughout
PINSKY’s evolutionary process by calculating probabilities of
transferring between each class. By combining these transfer
probabilities with additional information about whether and
when the levels were solved, through Bayes Rule this analysis
finishes by addressing the likelihood a level was solved given
exposure to inter-species transfer (explained below). In this
context, an agent transferring into a different species than the
species it is currently optimizing for is the agent visiting a
novel stepping stone. In POET this claim is assumed.

C. Speciation Methodology
Often as a way to protect innovation and prevent premature

convergence, evolutionary algorithms niche or speciate the
population such that individuals compete for survival in their
own species [44]. While typical methods diversify based on
genotypic representations, behavioral speciation is another
promising method to preserve diversity [39][45][43]. While
speciation occurs during evolution to protect promising in-
dividuals who have yet to meet fitness requirements of the
general population, the approach of this paper is analogous to
unsupervised clustering, where levels are separated into dis-
tinct groups after evolution completes, not during PINSKY’s
generation process.



7

Algorithm 3: Cosine Speciation

1 Create an empty set, A
2 Pick a similarity threshold, γ
3 Pick a set of vectors V ∈ RN
4 Normalize the vectors to unit length
5 for each vector, v ∈ V do

// 〈·, ·〉 is the dot-product in RN
6 if 〈v, a〉 < γ, ∀ a ∈ A then

// if A is empty, the comparison
on line 6 is necessarily true

7 A.insert(v)
// Assign v a color/ID

8 end
9 end

10 Return A // The set of unique species
representatives

Algorithm 4: Analysis of levels and agent transfer data
input: L: PINSKY levels.

τ : Agent Transfer data {(from id, to id, t), ...}.
γ (0.85): Cosine Similarity threshold

// Calculate level embedding
1 for l ∈ L map to m ∈M do
2 x1, x2, x3, x4 = Count unique game objects
3 x5 = Calculate A∗ path length from agent to key
4 x6 = Calculate A∗ path length from key to door(s)
5 m = 〈x1, x2, x3, x4, x5, x6〉 // Fig 4
6 end
7 Determine species representatives, A, via cosine

speciation of M // Alg. 3 and Fig. 5a
// Classify each level into a

species; Fig 5b
8 for m ∈ normalized(M) map to s ∈ S do
9 s = argmax(ATm) // This maps m.id to

the nearest species id
10 end
11 Calculate support for each species // Fig 6
12 Sort τ in temporal order
13 Count successful transfers for each time t // Fig 7
14 Count successful transfers into and from each species

for each time t // Fig 8
15 Initialize empty transfer matrix, T
16 for token ∈ τ do
17 from id, to id, t = token
18 T[S(from id)][S(to id)] += 1
19 end
20 T = T / total transfers // Fig 9

// Everything not on T’s diagonal is
inter-species transfer.

21 Calculate the probability that a level was solved given
inter-species transfer via Bayes Theorem: P(IST |
solved) / P(solved) // Table II

22 Visualize agent transfers between the meta-population
// Fig 1

While novelty search creates a new species when a candi-
date individual exceeds a distance threshold from individuals
in the archive, new species are created for PINSKY data when
a candidate individual exceeds a uniqueness threshold based on
similarity. While in novelty search the individuals must exceed
a sparseness threshold of maximum distance from nearby
individuals, the uniqueness threshold γ for cosine speciation is
the minimal cosine similarity between a candidate individual
and the other already discovered clusters.

To calculate uniqueness of levels, they are first characterized
as vectors by extracting their salient features as shown in
Figure 4. The components extracted are features of the levels
that are core to game play and subsequently used to obtain a
similarity score. The first four components of a level vector
are the numbers of doors, monsters, internal wall tiles, and
keys it contains. The fifth and sixth components contain spatial
information about a level’s layout based on the A* path
length between objects using the L1 (Manhattan) distance
admissible heuristic. The fifth and sixth components contain
spatial information about a level’s layout. The fifth component
is the cost of the path an A* agent calculates from its starting
position to the nearest key. The sixth component is determined
by calculating the A* distance from the key in the fifth
component to the nearest door such that x6 = A*(key1,door1).
If there are multiple doors, then x6 = A*(key1,door1) +
A*(door1,door2) + ... where door2 is the closest from door1.
Because the fifth and sixth components are based on the
behavior of the A* agent, they not only consider distance
between tiles but also indirectly measure the difficulty an
agent faces when navigating mazes and provide a best-case
baseline/upper-bound of agent efficiency regarding how to
solve the problem.

While there are many approaches to determining similarity
between vectors, this work explores using cosine similarity,
the cosine of the angle between two (unit) vectors [46][47], to
differentiate and cluster levels. That is, given two level vectors
v1, v2 ∈ RN , similarity, γ, is calculated as the projection
of v1 onto v2; if v1, v2 are unit vectors (i.e. normalized
by projecting them onto the Gauss sphere), then the cosine
similarity γ ∈ [−1, 1].4 However, because the levels in this
analysis are embedded as vectors in N6, cosine similarity for
these vectors ranges between (0, 1] rather than [−1, 1], where
higher values indicate more similarity.

In the data, a moderate uniqueness threshold for similarity
is set as γ = 0.85. This parameter was experimentally explored
within [0.5, 0.99] finding viable settings between [0.6, 0.9].
Interestingly when γ ≤ 0.6, there were about two clusters
(conflating observably distinct levels as the same species), and
when γ ≥ 0.90 the number of species doubled (and levels in
each cluster were not distinct). Future work will investigate
the impact of these settings on the analysis of transfer.

It should be noted that novelty-search-inspired method-
ologies of finding and determining species have a temporal
dependence; the order in which level vectors are examined
will change what levels get selected as representatives of their

4A cosine similarity value of -1 denotes that the vectors are parallel but
pointing in opposing directions; 0 denotes that the vectors are orthogonal; +1
denotes the vectors are parallel and pointing in the same direction.
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Fig. 4: Example level characterization vector. Semantic
level information is compressed into six dimensions. In order
of appearance in the vector: 2 doors, 3 monsters, 3 wall
fragments, 6 keys, 2 steps from agent starting position to
nearest key, and 16 steps from the nearest key to then visit
each door. This phenotype-based level characterization creates
an expressive embedding in N6.

niches/classes. Whenever a new species is discovered or once
every vector has been examined, the existing levels can be
reclassified into their most similar species. For example, the
120th level might be best described by the species whose
exemplar is the 824th level since level 824 was the first
one to escape the cosine similarity boundaries of previously
discovered levels in the archive.

While experiments were only performed for the game
dZelda and analyzed by injecting some domain knowledge
into the vectorized characterization of level, because games in
GVGAI are all defined in VGDL, similar projections can be
automatically determined for any of its games [35].

While this level characterization is expressive and can create
qualitatively different clusters of levels while maintaining
intra-cluster similarity (Figure 5), it is worthwhile to note that
it is still only an approximation of the level’s complexity. In
Figure 5b, levels 578 and 637 have a cosine similarity score
of 1, indicating that the two levels are functionally the same.
Upon inspection, this claim seems valid because the only
difference between the maps is the placement of one of the
chaser enemies from the upper right side of the map in level
578 to the lower left side of the map in level 637. Despite the
overall similarity, changing monster placement can make two
levels with similar characterization vastly different in difficulty
(e.g. levels where the agent starts directly next to a monster
versus the monster starting far away).

Through a post-hoc analysis of cosine similarity, all of the
levels generated by PINSKY are clustered and labeled by an
ID determined by Algorithm 3. During the transfer period
described in Algorithm 2, an agent, ai in the active meta-
population of pairs is free to transfer to different level, ej if
ai scores better on ej than all other agents in the active meta-
population. A core premise in both POET and PINSKY is
that transfer is an important mechanism for increasing agent
performance and task generation.

V. RESULTS

The goal of this analysis is to gain insight about the role
of inter-species transfer in POET-inspired coevolutionary sys-
tems. By applying the cosine similarity speciation and taking
into account the temporal nature of the level generation (i.e.
comparing the environments by order of creation), the final
distribution of level classification can be observed in Figure
6. For many of the experiments (particularly with multiDoor
dZelda), often a single species of levels dominate over other
species, and this trend is exasperated when the MC is removed.

Levels are classified according to Algorithm 3, and then
support is calculated for each class (Figure 6). Raw transfer
curves for each experiment can be seen in Figure 7. The
raw curves can also be broken down per class to observe
the waxing and waning of each class over evolutionary time
and visualize transfer between the classes as seen in Figure 8.
Using the classified agent-env pairs, the transfer data generated
by PINSKY can be used to determine the class of each agent
that enters or leaves a given pair. These agent updates provide a
measure of whether agent transfer is happening between pairs
that share a classification or pairs that are of different classes
i.e. number of transfers from other classes divided by number
of transfer. Figure 9 transitions from an agent-centric scale to
a population-wide atemporal scale looking at the amount of
transfer into and out of each class as a whole used to calculate
probabilities of transferring between each class. Algorithm 4
gives a full breakdown of the analysis in this paper.

Figure 7 shows the raw number of transfers as they happen
over the course of a PINSKY run as well as the mean
number of transfers for each experiment. On average, the
unaligned experiments exhibited greater amounts of agent
transfer than the aligned experiments. Means tests (Mann-
Whitney U-Tests and Relative T-Tests) found a significant
difference (p << 0.05) between the transfer dynamics in the
experiments providing evidence that different reward functions
and minimal criteria meaningfully change the transfer dynam-
ics (Figure 7). However, Figure 7 does not take into account
the speciation and instead shows global trends of how much
PINSKY relies on the transfer mechanism. Therefore, the first
natural question that arises from speciating the levels is: does
transfer happen only within a species, or does it also occur
between species?

As shown in Figure 6, a single species often dominates the
distribution of different level types, leading to the conjecture
that one species should also account for a majority of all
transfers. However, by looking at the transfer curves (Figure 7)
and breaking them down into their respective species, Figure
8 shows that even late in the evolutionary run, a species can
return to relevance after having been neglected for a period
of time. Furthermore, throughout the evolutionary process,
individuals are migrating between different species of tasks
(Figures 1 and 8c). For example, in the first multiDoor dZelda
experiment, all transfers briefly happen purely among species
20. However, individuals in the other species do not just die
off. In the multiDoor 1 experiment, 66% of all transfer happens
within species, with 56% of all transfers happening within
species 20 (Figure 9b). 50+% of transfers happen between
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(a) Species Representative levels (i.e. the first level to escape the cosine similarity regions of all already existing species representatives) for the first
multiDoor dZelda experiment. The color above each level corresponds to distinct species.

(b) Levels were randomly sampled from multiDoor dZelda experiment 1 species 578 to examine if cosine-similarity resulted in similar levels being in
the same species. Cosine-similarity for each level is compared against level 578.

Fig. 5: Prototypical levels (i.e. species representatives) for multiDoor dZelda experiment 1 and a random sampling of
levels belonging to species 578 showing that the cosine similarity speciation is finding clusters which are different across
species (5a) and similar within a species (5b).

Fig. 6: Level distribution by species. Often a single species
of levels dominate over other species, but PINSKY manages to
generate levels that require diverse behaviors to solve. Species
are colored in order of emergence the initial species being
pink, then yellow, blue, white, orange, etc.

members of the same species and a large portion of the
remaining 50% happens between the first-and-second-most
populous species.

Previous experiments [2] demonstrated that the aligned
reward function dramatically improved the number of levels
PINSKY created and solved (Table II). The transfer curves in
Figure 7 provide some additional clarity as to how PINSKY

achieved this feat. For the first singleDoor experiment, its
total transfer numbers were around 20 transfers each transfer
step. However, the singleDoor aligned experiment transfer
curves saw a decrease in transfers over time with the second
singleDoor aligned experiment seeing a decrease in transfers
followed by a subsequent increase.

When the reward alignment is left in place, but PINSKY’s
MC is removed, the solve rate returns to its pre-aligned levels.
For the noMC experiments, Figures 6 and 9 show that a) most
of PINSKY’s generated levels are similar (i.e. level diversity
has collapsed) and b) that the vast majority of the transfer
is within these mega-species which means that inter-species
transfer has been impeded as hypothesized. Combined, these
observations suggest that the MC was helpful for fostering
diversity in the generated levels which was then exploitable by
PINSKY’s transfer mechanism to help train high-performing
agents.

Figures 8 and 9 suggest that transfer among a single species
is the primary mode of transfer in PINSKY and therefore
responsible for the system’s ability to create and solve difficult
problems. However, Table II shows that a minimum of 39% of
solved levels required inter-species transfer, and a maximum
amount of 75%.5 Despite 83% of all transfer happening inside

5The noMC cases are not included in this comparison since removing the
MC collapses level diversity and impedes inter-species transfer therefore the
comparison is not fair.
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Fig. 7: Analysis Total Transfer / Smoothed total transfer
curves for each experiment. Transfer dynamics of aligned
vs non-aligned environments show different long-term transfer
patterns where on average in the aligned environments, transfer
is less prevalent, p << 0.05.

species 24 in the multiDoor noMC experiment (Figure 9),
31% of solved levels exhibited inter-species transfer (Table
II). These conditional probabilities show the necessity of inter-
species transfer more than Figures 8 and 9 imply alone.

It is interesting to note that if a generalist agent (i.e. one
that solves all or most created levels) were to be trained, then
that agent would transfer into each level and therefore the
transfer value would be maximized at 30 (the meta-population
size) and then drop to zero as the generalist agent would
not be able to be defeated (by a copy of itself living in
other environments). That does not happen. Instead, agents
specialize; as POET is solving increasingly complex levels
the transfer curves reduce, showing that it becomes harder for
an incumbent agent to be replaced (Figures 7 and 8).

Experiment % of viable
solved levels

p(solved|inter-species
transfer)

singleDoor 62 0.74
singleDoor aligned 1 90 0.39
singleDoor aligned 2 83 0.41
singleDoor alg. noMC 61* 0.41
multiDoor 1 13 0.75
multiDoor 2 8 0.49
multiDoor aligned 29 0.47
multiDoor alg. noMC 10* 0.31

TABLE II: Percentage of solved viable levels for each
experiment as well as the probability that a level was
solved given transfer from an outside species. Notably,
the limited success of PINSKY on difficult domains (e.g.
multiDoor dZelda) is not-insignificantly due to inter-species
transfer. Column II is calculated using Bayes Rule.
*not all levels might be viable because the MC was removed.

Figure 1 visualizes the phylogenetic tree of the first 105
environments of PINSKY’s meta-population. The black edges
between nodes indicate the phylogenetic ancestry or lineage of
an agent-environment pair, starting from a randomly initialized

(a) Breakdown of transfer dynamics to species X plotted temporally.

(b) Breakdown of transfer dynamics from species X plotted temporally.

(c) Negative values suggest transfer out of the species; positive values into
the species.

Fig. 8: Analysis To-and-From / Total lifetime transfer
dynamics for the multiDoor dZelda 1 experiment by
species. Interestingly, non-dominant species wax and wane in
relevance over time. Furthermore, the transfer-to and transfer-
from curves are not one-to-one, suggesting that agents are in
fact transferring between species.

agent and a seed level for the generator (shown in Figure 5a
level 0). Node colors indicate the species of a pair, where
species is determined through Algorithm 3. Outgoing red
edges like those from node 75 to 104 indicate that an agent of
one pair has successfully transferred to another environment.
Using the Hardcore Bipedal Walker domain, Wang et al.
suggest that close relatives are more genetically related (i.e.,
similar) than those with only distant ancestors [1][3] and that
transfer between nodes with distant ancestors is important for
discovering high-performing individuals. Figure 1 shows that
similar environments do not necessarily descend from similar
ancestor pairs. For example, blue species emerge from both
pink and yellow parents (e.g., pairs 59 to 78, 4 to 32, and 69
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(h) multiDoor aligned noMC

Fig. 9: Analysis Blocks / Inter- and intra-species transfer
percentages for dZelda games. Y-axis is the species the
agent transferred from and the X-axis is the species the agent
transferred to. Note that the off-diagonal represents inter-
species transfer. If all transfer was intra-species transfer, all
off-diagonal entries would be zero and the to- and from-
transfer graphs in Fig 8 would be identical.

to 93), while pink and yellow species can emerge from each
other (e.g., 3 to 7, 7 to 29). This result is not surprising because
of the level embedding’s limited expressivity and inability to
capture geometric information.

Although, as shown earlier, most transfers happen between
levels in the same species (indicated by color), there are clear
examples of inter-species transfer between nodes in Figure 1
with distant ancestors (e.g. level 102’s agent (yellow, bottom
center) transfers into level 81 or when level 93’s agent (blue,
center) transfers into level 103) as well as transfer between
nearby but different species of nodes (level 103 to 97). The
cosine similarity between levels 102 and 81 is 0.57, 93 and
103 is 0.71, and 103 and 97 is 0.73.

An agent that has specialized into a particular environment
is likely to fail when presented with a more difficult environ-
ment. However, agents transferring backward (from a more
difficult environment into an easier environment) is observed
in PINSKY. Backwards transfer can be observed between
levels 75 and 80 and is shown in Figure 1. Levels 75 and 80
are nearly identical, which makes sense as level 80 is the direct
descendent of level 75. The difference between the two levels
is that a monster’s starting position has been moved from the
right of the agent’s starting position and placed directly in the
shortest path from the agent’s initial position to the key and
then the goal. As PINSKY attempts to (independently) solve
level 80, what it has learned is backward compatible with level
75 as the agent in level 80 proves able to replace level 75’s
agent. Notably, level 75 is solved only after level 80’s agent
transfers into environment 75, but level 80 remains unsolved
for its entire duration in the PINSKY active population.

Agents transferring into more difficult environments can
also be seen in Figure 1. Level 86’s agent transfers into level
92. These two levels have a cosine-similarity of 0.95 and
share some macro features (each level has two doors and a
similar distance from the agent to key) so a transfer here seems
reasonable. However neither environment was solved.

VI. DISCUSSION

A. Evolutionary Dynamics

Phylogenetic trees corresponding to biological evolution
are sprawling, deep, and contain nested branches [3]. While
researchers in the field of artificial life seek to replicate this
phenomenon in artificial evolutionary systems, biologically-
inspired generative algorithms often do not produce phyloge-
netic trees like those in nature. Figures 6, 8, and 1 imply that
PINSKY’s phylogenetic trees are also unlike those found in
nature. In fact, Figure 6 shows that an often overwhelming
number of environments belong to a single species; however,
Figure 8 shows that the smaller species are still important
and can reemerge. Furthermore, Table II shows that dif-
ferent species play an important role in solving PINSKY-
generated environments where many of the solved levels
exhibit between-species transfer dynamics thereby navigating
unlikely stepping stones on their path to solving difficult levels.

The term exaptation describes a shift in the utilization
of a trait during evolution [48]. Phrased another way, an
innovation that occurs in a particular evolutionary context later
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becomes useful for a completely different purpose. We claim
that transfer in PINSKY is strongly related to this relatively
understudied phenomenon. When a better-suited agent is found
for a level, the better agent replaces the incumbent agent.
The behavior which previously served the purpose of solving
environmental challenge A now solves a new challenge, B.

The tournament update inside POET evaluates each active
agent in every other active environment to find the best
agent for each environment. This population-wide competition
instigates zero-shot evaluations of the agents on each level. If
agents are rewarded for side quests (e.g. killing enemies), as
when using RD, then it makes sense that that transference
of agents is more common. An agent that learned to kill
one monster would be replaced by an agent that kills one
monster and also picks up a key, or by an agent that kills
two monsters (i.e. orthogonal agent improvement with respect
to the overall goal of winning the game). However, simply
killing two monsters brings the agent no closer to the winning
game state and in fact reinforces the skills needed for killing
instead of winning, so the “improvement” brought by replacing
the incumbent agent is actually a degradation of the agent’s
ability. Degraded ability after transfer is a phenomenon known
as negative transfer [9][49].

One potential reason for the transfers decreasing could be
that as the environments diverge from each other (i.e. more
species are spawned or the levels come from lineages with
different specialties), there is less immediate overlap between
the skills needed to solve one level versus another (e.g. killing
monsters because they block a critical path versus running
away from monsters so as to not get caught). In the earlier
stages of the PINSKY process, agents with specific behaviors
might move between environments more easily.

The aligned reward, RA, function makes the agent opti-
mization into a process that can be more cleanly solved (i.e.
the algorithms are not being tricked into moving into parts
of the parameter space that give high reward but do not
move the agent closer to winning the game). Furthermore,
using the aligned reward function helps PINSKY avoid issues
of negative transfer [49] caused by the distracting default
GVGAI reward function. Therefore, in the cases where the re-
ward/fitness function directly incentivizes the desired behavior,
transfer becomes more meaningful and therefore less common.
However, the cost of the aligned reward function is that it is
sparse providing feedback only at the end of a rollout.

In the singleDoor dZelda aligned 2 experiment, the transfer
rate spiked, dipped, and then started to spike again (Figure
7). The initial spike matches the behavior shown in the other
aligned transfer graphs, but the secondary rise in transfers is a
new phenomenon. While the agent networks might have spe-
cialized (thereby decreasing the amount of possible transfer),
the majority of unique species contained levels not yet solved
by the current crop of PINSKY agents. Therefore, transfer
likely increases again to compensate for the harder tasks.

Given that killing enemies is an important part of dZelda
games, it makes sense that a designer might consider explicitly
rewarding that behavior. However, the reward shaping inherent
(e.g. killing monsters) in the default GVGAI reward function
can overpower the sparse task reward (e.g. winning the game).

As a result of learning with the reward shaping, the agent is
not learning the desired task [40][50].

Once an agent in a reward-aligned dZelda experiment has
solved a level, the only way for it to be replaced by another
agent, is if the prospective new agent can solve the level faster
than the incumbent agent. On the flip side, if the incumbent
agent is killed by enemies, then it can be easily replaced by
agents that survive longer before dying, agents that purely stay
alive, or agents that actually solve the task. By definition of the
aligned reward function, solutions improve with each transfer
until the minimum path solution is found. Since the reward
function is truly indicative of whether or not the task has
been accomplished, transfer only happens when meaningful
improvement has been made by the new agent with respect to
the incumbent agent. By removing the “distracting” portions of
the reward function, the optimization algorithm cannot move
towards deceptive local optima as happens when using the
standard dZelda reward function. Therefore, given that PIN-
SKY’s optimization steps are more limited in their direction
of improvement, the transfer aspects of POET-style algorithms
allow the population to search for behaviors outside of being
driven purely by the optimization algorithm. In other words,
PINSKY can find meaningful stepping stones throughout its
population and transfer agents into the environment they thrive
in, thereby giving the optimization algorithm a better foothold
in the reward landscape from which to continue optimizing.

B. Connecting Coevolution with Machine Learning

The long-term dynamics of transfer learning in POET-like
systems provides hints about similar coevolutionary phenom-
ena. Critically, POET-style algorithms are not training under
a minimax setup due the minimal criteria (MC). The MC
loosens the constraint that the generative evolutionary process
create environments that minimize agent ability, and instead
new environments that are simply “good enough” are allowed
to exist. By not explicitly optimizing (i.e. minimizing) but
instead providing a floor, the MC allows the generative process
to create diverse stepping stone environments that the agents
can use to solve difficult potentially orthogonal tasks. When
the MC is removed from PINSKY, the level diversity collapses
(Figure 6) mirroring mode-collapse in a GAN [30], and even
with the reward being aligned, the amount of solved tasks
drops. Needing both the reward alignment as well as an MC
provides a baseline that future not-quite minimax (and in the
case of no MC, minimax) training schemes can adopt.

The presence of reward-alignment and transfer is mirrored
in self-play RL settings such as AlphaStar [51]. AlphaStar
maintains a population of agents to get diverse strategies,
and when the agents play against each other, they participate
in a zero-sum (i.e. well-aligned) game to determine which
agent will live (transferring its weights to the loser). Whereas
AlphaStar seeks to create a diverse initial set of agents
using human data and maintain the diversity using highly-
shaped reward functions specific to each cluster, integrating
an MC might allow setups like AlphaStar to become entirely
self-generative and remove the seeded human data without
impacting the algorithm’s overall effectiveness.
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C. Connection to meta-learning

Researchers have proposed meta-learning procedures that
optimize a set of meta-parameters in an inner-outer loop
training scheme [14][52][12]. When this paradigm is gradient-
based, the nested structure allows inner-loop training to spe-
cialize a model for a task, calculate derivatives, and then
backpropagate through the inner-loop learning algorithm to
update the meta-parameters in the outer-loop [52][12]. Alter-
natively, POET-like systems contain a meta-population where
each individual undergoes inner-loop optimization, and the
population coevolves in response to the current structure and
ability of agents in the meta-population. Upon finishing the
inner-loop optimization, evaluation of each combination of
each agent and environment in the meta-population is executed
to update agent-environment pairings. In this sense, POET’s
meta-population fills a similar roll as meta-parameter models
in the gradient-based optimization schemes mentioned earlier.

D. Impact of limited generalization

While PINSKY is able to create agents able to solve levels
unsolved by agents evolved from scratch, it has not so far
been able to find a single agent able to solve all levels.
This fact, combined with other observations, suggests that the
neural network architecture used might preclude truly general
policies. This is in accord with recent work on the failure of
reinforcement learning to generalize [53]. Agent-centric inputs
to the agent might enable more general solutions [54].

E. Future Work

How can PINSKY engage in more meaningful transfer
learning dynamics beyond an aligned, but sparse, reward
function [2]? One potential answer is to explicitly embrace
the meta-learning structure of POET. For example, soft RL
optimization methods that explicitly maximize an agent’s long-
term reward as well as making the policy as general as possible
[55] can be explored as alternative inner-loop optimization
processes. Similarly, one might use methods specifically de-
signed to learn policies that are easily adaptable [12][20][14].
Importantly, however, analysis suggests the need for more
expressive environments [56] or environmental encodings [57]
or to explore the space of current tasks more exhaustively
focusing on finding greater diversity between levels [45].

VII. CONCLUSION

This paper shows that transfer (i.e. meta-population realign-
ment) mostly happens between similar environments, but that
inter-species transfer, although rarer, was integral to PINSKY
system performance. This paper offers a novel analytical
framework (i.e. post hoc speciation, phylogenetic tree visual-
ization, species-sensitive transfer matrices) for studying long-
term coevolutionary dynamics in POET-like systems through
the lens of transfer learning. The analysis also casts PINSKY
in the framework of generalized inner loop meta-learning
algorithms [52]. Under these frameworks, we show how
PINSKY manages to solve difficult environments through re-
peated policy transfers between different species of “stepping

stone” environments ultimately resulting in specialized agents
that can solve otherwise unsolvable PINSKY-generated tasks.
Furthermore, we show the importance of minimal criteria on
POET-like systems and its impact on transfer learning.
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