
Co-generation of game levels and game-playing agents

Aaron Dharna
Dept. of Computer and Information Science

Fordham University
aadharna@gmail.com

Julian Togelius
Tandon School of Engineering

New York University
julian@togelius.com

L. B. Soros
Tandon School of Engineering

New York University
lsoros@nyu.edu

Abstract

Open-endedness, a longstanding cornerstone of artificial life
research, is the ability of systems to generate potentially un-
bounded ontologies of increasing novelty and complexity.
Engineering generative systems displaying at least some de-
gree of this ability is a goal with clear applications to proce-
dural content generation in games. The Paired Open-Ended
Trailblazer (POET) algorithm, heretofore explored only in a
biped walking domain, is a coevolutionary system that simul-
taneously generates environments and agents that can solve
them. This paper introduces a POET-Inspired Neuroevolu-
tionary System for KreativitY (PINSKY) in games, which
co-generates levels for multiple video games and agents that
play them. This system leverages the General Video Game
Artificial Intelligence (GVGAI) framework to enable co-
generation of levels and agents for the 2D Atari-style games
Zelda and Solar Fox. Results demonstrate the ability of PIN-
SKY to generate curricula of game levels, opening up a
promising new avenue for research at the intersection of pro-
cedural content generation and artificial life. At the same
time, results in these challenging game domains highlight the
limitations of the current algorithm and opportunities for im-
provement.

Introduction
Humans acquire skills incrementally, e.g. learning to crawl
before learning to walk. In this way, primitive skills serve as
building blocks for more complex and difficult behaviors.
Curricula, which are sets of related tasks or increasingly
complicated versions of the same task, can scaffold incre-
mental acquisition of skills for hard problems that are too
complex to solve from scratch. However, AI research does
not often make use of curricula, instead operating on largely
unrelated task domains. Yet, curriculum generation is an im-
portant problem because although deep learning algorithms
and other recent innovations have achieved landmark per-
formance on historically unsurmounted benchmark domains
such as the board game Go (Silver et al. 2016) (which has
long served as a grand challenge for artificial intelligence)
and the video game Montezuma’s Revenge (Ecoffet et al.
2019), the challenge of developing intelligent processes that
perform well in general remains unmet.

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The recent Paired Open-Ended Trailblazer (POET) algo-
rithm (Wang et al. 2019) took an initial step towards open-
ended curriculum generation by evolving parameters for a
2D biped locomotion domain (i.e. hill slope and obstacle
placement) while simultaneously evolving agent controllers.
Open-ended connotes the scale of creativity seen in biolog-
ical evolution (Stanley, Lehman, and Soros 2017). POET’s
coevolutionary system was able to generate unique adaptive
curricula for learning to walk on uneven terrain. However, it
is unknown what other kinds of curricula can be generated
coevolutionarily. Games are rich domains for exploring this
question because they require critical skills not necessary for
bipedal walking, such as long-term planning to avoid ene-
mies. However, many standard video-game-based reinforce-
ment learning (RL) benchmarks are unsuitable for curricu-
lum generation because the games cannot be modified.

This paper describes a novel system called PINSKY that
co-generates gameplay agents and levels for games in the
General Video Game AI (GVGAI) competition framework.
First, necessary background on procedural content genera-
tion is reviewed and the POET algorithm is described in full
detail. The PINSKY system is then introduced and key dif-
ferences from original POET (necessary for generating and
playing games) are explicitly noted. Results show that PIN-
SKY can co-generate levels and agents for the 2D Zelda- and
Solar-Fox-inspired GVGAI games, automatically evolving a
diverse array of intelligent behaviors from a single simple
agent and game level. Though there are limitations to level
complexity and agent behaviors, our analysis suggests rea-
sons for these limitations and directions for future research.

Background
Early work on gameplay AI centered around tree search
methods such as A* and minimax (Yannakakis and Togelius
2018). The successive development and wider adoption of
artificial neural networks (ANNs) allowed further innova-
tion for game-playing AI. Methods for optimizing ANNs
generally fall into five categories: supervised learning, unsu-
pervised learning, RL, evolutionary approaches, and hybrid
learning approaches (Justesen et al. 2020). RL approaches
to gameplay in particular generally involve an agent inter-
acting with an environment and repeatedly gaining some
amount of reward for its actions. Learning, then, is an op-
timization process that maximizes long-term reward. Mod-



ern RL systems have achieved success in part by incorpo-
rating self-play (which can be viewed as a form of coevo-
lution [Arulkumaran, Cully, and Togelius 2019]) into learn-
ing schemes, at least for two-player competitive games. In
this paradigm, policies being learned are played against each
other, with the resulting gameplay data then affecting the tra-
jectory of the learning algorithm. Recent examples of high-
performing self-play systems include AlphaGo (Silver et al.
2016), AlphaStar (Vinyals et al. 2019), and OpenAI Five
(OpenAI et al. 2019), though, notably, these systems all re-
quire human gameplay data for initial bootstrapping. Juste-
sen et al. (2018) demonstrate that automatically generating
levels at an agent-appropriate difficulty level dramatically
improves performance on 2D games. However, the level
generators for the four games in their study (adapted ver-
sions of Zelda, Solar Fox, Frogger, and Boulder Dash) in-
corporated human-designed elements specific to each game,
thereby both demonstrating the utility of generating training
levels on-the-fly and highlighting that there is still a need for
truly human-free level generation systems.

Search-based procedural content generation
Procedural Content Generation (PCG) refers to a variety of
methods for algorithmically creating novel artifacts, from
static assets such as art and music to game levels and me-
chanics. Much research is devoted to creating levels that
provide adequate challenge and could have plausibly been
created by a human level designer. Importantly, the work de-
scribed in this paper is not focused on creating levels plau-
sibly created by human designers. Instead, it creates game
levels that a) satisfy specific playability constraints, b) in-
crease in complexity over time, and c) coevolve alongside
algorithmically-controlled game-playing agents.

Search-based PCG in particular has been theorized to po-
tentially lead to truly endless games (Togelius et al. 2011).
The search-based approach requires three primary compo-
nents: 1) a search algorithm, 2) a content representation,
and 3) an evaluation function (Shaker, Togelius, and Nel-
son 2016). The search algorithm component of such systems
frequently (but not always) takes the form of an evolution-
ary algorithm, wherein a population of content artifacts is
created and gradually varied in order to maximize an evalu-
ation function. For the purpose of creating games, the evalu-
ation function can incorporate information from automated
gameplay(Togelius et al. 2011). For example, playtraces can
be examined for lead changes (Browne and Maire 2010), the
capacity of an agent to learn to play the game can be mea-
sured (Togelius and Schmidhuber 2008), or the performance
of several agents on a game can be compared (Nielsen et
al. 2015). In any case, methods designed only to optimize
objective-oriented fitness metrics can result in incomplete
or stagnated search (Lehman and Stanley 2011). In con-
trast, the work reported in this paper sees one realization of
endlessly creating diverse levels for game-playing agents to
learn from where the levels grow more complex over time.

The POET Algorithm
The Paired Open-Ended Trailblazer (POET) algorithm
(Wang et al. 2019) is a coevolutionary system for concur-

rently generating and solving new environments. The ap-
proach first explored the OpenAI Gym’s Hardcore Bipedal
Walker domain, wherein environments consist of obstacle-
laden hills. Given rangefinder sensors and joint angle in-
formation, agents must learn gaits that allow them to walk
far over difficult terrain. POET coevolves agents and ter-
rains through three main processes: 1) periodically generat-
ing new environments by mutating existing parents, 2) incre-
mentally optimizing agents paired with environments, and
3) occasionally attempting to transfer optimized agents into
new environments. An overview is given in Algorithm 1:

Algorithm 1: POET Algorithm
Pair initial environment with unoptimized agent
while not done do

if counter % mutationTimer == 0 then
Generate offspring environment-agent pairs
Remove too-easy and too-difficult offspring
if population size exceeded then

Remove oldest environment-agent pairs
end

end
Perform a fixed number of optimization steps
Reevaluate all optimized individuals
if counter % transferTimer == 0 then

Evaluate all agents on all environments
Replace incumbent agents with more
successful agents, if any exist

end
counter += 1

end

Importantly, generated environments must satisfy a mini-
mal criterion (for viability) that the level is neither too easy
nor too hard. The reward function for biped walkers is con-
tinuous, allowing “neither too easy nor to hard” to be defined
by minimal and maximal acceptable reward values. This bi-
nary approach to fitness, explored recently in the context of
artificial life and evolutionary robotics (Lehman and Stanley
2010), presents a potentially more open-ended alternative to
traditional gradient-based evolution. After an environment
satisfies the difficulty criteria, it inherits a copy of its parent’s
neural controller. Another important and unusual feature of
POET is that it periodically evaluates all possible pairs of
agents and environments in the population, thereby reveal-
ing behaviors that can be easily adapted to multiple environ-
ments. Experiments showed that such transfers are neces-
sary for solving difficult walking problems. Through incre-
mental optimization and regular transfer of agents, POET
generates viable curricula for biped walking.

It should be noted upfront that POET’s dynamics are still
largely unknown, as few experiments have actually ever
been performed. In fact, Wang et al. (2019) reported results
from only three runs because of the high computational cost.



Methodology
This section primarily describes the novel PINSKY system1,
which adapts the POET algorithm to generating game levels
and gameplay agents instead of biped walkers and terrains.
PINSKY is composed of three interacting subsystems: 1) the
GVGAI game framework, 2) an evolutionary level genera-
tor, and 3) an incremental game-playing agent optimizer.

• GVGAI Framework: The General Video Game Artifi-
cial Intelligence (GVGAI) framework (Perez-Liebana et
al. 2018) provides an interface for defining and play-
ing games written in Video Game Description Language
(VGDL), which is a text language for 2D games and levels
ranging from dungeon crawlers and RPGs to platformers.
Two GVGAI games, Zelda and Solar Fox, are explored in
this paper. The GVGAI framework affords multiple tracks
of interaction with the games including automated level
generation and gameplaying. PINSKY uses both capabil-
ities in tandem to build a population of agent-environment
pairs that coevolve over time such that the game levels be-
come more complex while the agents become more profi-
cient (i.e. solving these increasingly complex tasks).

• Evolutionary Level Generator: Environment evolution
in PINSKY begins with a seed level from which all fu-
ture levels descend. New offspring levels are generated
by mutating tiles on a copy of the parent map. There are
three types of possible map mutations, each with separate
probabilities: 1) removing a non-player sprite, 2) adding
a new sprite, or 3) moving an existing sprite. After each
mutation is performed, there is a 50% chance of another
mutation occurring. Ultimately, the new map is deemed
viable if it can pass a minimal playability criterion check
(described later in this section) whereupon the new agent-
map pair inherits its parent’s neural network and joins
the population of actively optimizing environments. How-
ever, the new agent-map pair does not replace its parent in
the population.

• Incremental Gameplay Agent Optimizer: Gameplay
agents are controlled by fixed-topology convolutional
neural networks, depicted in Figure 2, reducing the prob-
lem of finding good agents to a search through connec-
tion parameter space. When an agent-offspring pair is ini-
tially created via mutation, the offspring agent is an ex-
act copy of the parent agent. Note that, as in the origi-
nal POET algorithm, optimization occurs incrementally
with a fixed number of optimization steps being exe-
cuted during each main algorithm loop to adapt offspring
networks to their new environments. Preliminary experi-
ments investigated a variety of optimizers, including RE-
INFORCE, PPO (Schulman et al. 2017), a simple ES,
CMA-ES (Hansen 2007), OpenAI’s ES (Salimans et al.
2017), PEPG (Sehnke et al. 2010), and Differential Evolu-
tion (DE) (Storn and Price 1995). DE, a population-based
optimizer, was selected because of its good convergence
properties, ease of implementation, parallelizability, and
scalability to high-dimensional problems.

1code: tinyurl.com/ydgf64wa

Differences from POET
Games add complexity and diversity The range of game
types that even a single game domain can encompass is im-
mense. For example, in dZelda the task is to pick up a key
and take it to the exit while staying alive. However, given a
flexible representation (such as VGDL), the game can triv-
ially be changed into a “connect the dots” game wherein the
agent must pick up a key and then find a path connecting all
doors. The win conditions of these two possible dZelda vari-
eties are vastly different, highlighting the future potential for
generating arbitrary games. Furthermore, games inherently
enable more complex behaviors than traditional evolution-
ary robotics domains because winning frequently involves
interacting nontrivially with other agents.

ANN Input The POET agent had access to rangefinder
readings and information about its own joint angles. In this
agent-centric paradigm, each action results only from local
state information. In contrast, PINSKY agents are given a
tile map of the environment as input to their neural net-
works (Figures 1 and 2) in addition to the agent’s orienta-
tion. Giving the agent access to global game state and lo-
cal agent state information allows for more complicated be-
haviors to emerge. Furthermore, moving away from purely
agent-centric network inputs enables the potential general-
ization of PINSKY to arbitrary games, as most 2D Atari-
style games can arguably be represented as some sort of tile
map. A benefit of this new tile input is that it reduces the pol-
icy network size. Having fewer parameters makes available
evolutionary optimization methods that previously were in-
capable of training policy networks due to not scaling well.

Reward Function The RL problem of credit assignment,
or determining which actions cause the observed outcome,
are hard even when the reward function is dense. A sparse
function makes this task even more difficult. Games such
as Solarfox and dZelda are substantially more difficult than
the reward-dense biped walker domain. In Solarfox, the goal
task of picking up coins is the only reward source. The
dZelda agent is rewarded for picking up a key, taking it to

w

w

w

w

w

w

3

3

a

a

+

+

g

g

Figure 1: One-hot encoded map input to the convolu-
tional policy network. Tiles in each GVGAI map (left) cor-
respond to x,y positions in the environment. In this example
from dZelda, possible tiles include (w)all, (g)oal, (a)vatar,
key (+), and monster (3). These 2D maps are then extended
into a tensor (right) where each slice denotes the presence
(indicated by color) or absence of each tile type.



the door (the win condition), and killing monsters. Solely
killing monsters can also earn more reward than winning the
game, providing a distracting reward. Reward in both games
can be sparse because only specific behaviors earn reward.

Minimum Playability Criteria POET prevents evolu-
tionary search from degenerating by requiring that evolved
terrains satisfy a minimal criterion (MC) (Lehman and Stan-
ley 2010) defined a priori; the walker had to be able to walk
at least a minimum amount (ensuring the level is not too
hard) and at most a maximum amount (ensuring the level
is not too easy). In PINSKY, the minimal criterion concept
has been adapted into a playability criterion. Specifically, a
level is too easy if a random agent can beat the level and
too hard if a Monte Carlo Tree Search agent (with the de-
fault GVGAI time limit of 40ms of planning time per ac-
tion) cannot beat the level. Methods such as MCTS are limit-
ing because having a fast forward model is often an onerous
requirement. Furthermore, even with a fast forward model,
planning algorithms like MCTS are still subject to variable
performance (Nelson 2016). Nevertheless, MCTS is robust
enough to function as a playability check that can solve a
variety of complex levels for these particular games.

The MC combined with age-based culling allows evo-
lutionary drift to introduce new challenges that the neural
network agents will coevolve with. The random mutation in
the Evolutionary Level Generator is biased towards adding
new objects (e.g. enemies) into the levels, disrupting existing
policies. Culling by age provides ample time for the entire
population of agents to attempt to solve the new task through
direct optimization of the paired agent and repeated transfer
attempts of all other agents to replace the paired agent.

Experiments
As a reminder, the initial POET experiments consisted of
three runs in a single biped walking domain. Three PIN-
SKY experiments are similarly performed, however each
run explores a different game domain and thereby highlights
unique capabilities of the novel system. Experimental pa-

13

13
Map tensor

Compass

6
48

100

4

3

32

8

5

1

1

1

1

9
3

Figure 2: Dual-input convolutional policy network for
dZelda. As input, the network takes both the one-hot en-
coded GVGAI maps (Figure 1) and agent orientation in-
formation, then produces an action. The Solarfox network
structure is minimally different because the map tensor is a
different shape (length 11, width 10, depth 14) and the agent
can select from fewer actions.

Argument Default Description
game dZelda GVGAI game to play
gameLen 500 Max actions per game
nGames 1500 DE evals per opt. step
popSize 50 DE population size
mutationTimer 25 Loops before mutation step
maxChildren 8 Max offspring per parent
mutationRate 0.8 Parent level mutation
transferTimer 10 Loops until transfer attempt
maxEnvs 30 Agent-env. pair pop. size
numPoetLoops 5000 Max PINSKY loops

Table 1: PINSKY parameters

rameters are in Table 1. While such a small number of runs
precludes statistically significant analysis, demonstrating the
viability of this new approach to co-generating game levels
and gameplaying agents at all despite significant computa-
tional limitations is worthwhile in its own right.

The first two experiments demonstrate PINSKY perfor-
mance on two dZelda variants. The first dZelda experiment
type (singleDoor) permits only single-door environments,
wherein game complexity is increased by adding and rear-
ranging enemies, walls, and keys. The second dZelda exper-
iment type (multiDoor) additionally permits multiple doors
in each level, subtly transforming the game from a relatively
simple dungeon crawler into a more complex game requir-
ing planning to take one key to all doors within the time
constraints. All dZelda experiments start with the same seed
level (Figure 3a, left).

The third experiment type demonstrates the broad gen-
erative potential of PINSKY by additionally investigating
the GVGAI game Solarfox. Solarfox differs from dZelda
in terms of enemy behaviors; while dZelda enemies move
freely and kill on direct contact, Solarfox enemies (exactly
two per level) can only move around the level’s perimeter,
but have projectile attacks. The generated neural networks
for playing Solarfox have a slightly different topology than
dZelda networks; the tile representation includes a separate
sheet for the second enemy character, and the set of actions
the agent can take does not include combat, therefore fewer
output nodes are required. Furthermore, Solarfox operates
on a different movement scheme than the tile-based move-
ment of dZelda. Movement in Solarfox is continuous, where
the agent moves in millimeters in the game. In that case, the
tile representation discretizes the space into tiles. Because
the Solarfox agent requires many more moves to cross the
map than the dZelda agent longer games were needed to en-
sure the minimum playability criterion could be met (so that
MCTS reliably solves human-designed levels).

The potentially open-ended nature of POET-like systems
means that each run of the algorithm could, in theory, con-
tinue forever. However, practical constraints on computa-
tional resources necessarily limit runs. In the original POET
experiments, each run lasted 10 days in wall clock time
(Wang et al. 2019) while harnessing 256 parallel CPU Cores
(with no mention of RAM). The experiments reported herein
ran on a 32-core CPU using 50 GB of RAM per experiment.



Results
Table 2 contains summary statistics for the initial runs.
While multiDoor dZelda ran for a full 5000 loops, the other
runs were truncated to free up computational resources.
Specifically, the singleDoor dZelda run was terminated once
it displayed substantial generative potential so the Solarfox
run could begin. For the purpose of investigating PINSKY
on complex domains at longer timescales, multiDoor dZelda
was allowed to complete its full 5000 main algorithm loops.

Figure 3 depicts lineages of generated levels, with task
complexity increasing over evolutionary time. Successful
dZelda agents tend to follow shortest-distance paths mea-
sured in Manhattan distance. Of course, not all behaviors
are efficient or even effective. Consider an example policy
observed on a level similar to the seed level (Figure 3a, left).
The degenerate agent takes the key, moves one step, swings
its sword to kill the monster, then keeps swinging forever.

When playing Solarfox (which has a sparse but non-
distracting reward signal), PINSKY agents solve 84.8% of
generated levels that passed the playability criterion. For
comparison, 64% of playable singleDoor dZelda levels and
only 12.7% of multiDoor dZelda levels were solved. There-
fore, two additional dZelda singleDoor experiments were
run for 5000 loops each using a non-distracting, or aligned,
reward function that encourages efficient solutions:

R =


1− nsteps

gameLen agent reaches goal
nsteps

gameLen − 1 agent dies
0 agent neither reaches goal nor dies

PINSKY generated 1512 and 1251 viable levels and con-
currently solved 90% and 83% of viable levels, respectively,
which is comparable to performance on Solarfox. Simi-
larly, when multiDoor dZelda uses the non-distracting re-
ward function, 1344 viable levels were generated of which
29% (compared to 12.7% previously) were solved.

The minimal playability criterion requires that all gen-
erated levels have a MCTS solution before an agent-level
pair can be added to the PINSKY population. It is interest-
ing, then, to note that most, but not all, generated multiDoor
dZelda levels remain unsolved. The rightmost level in Fig-
ure 3b, generated relatively late in its lineage, is an example
solved level. The agent takes an efficient path: down to a key,
up to the door above its starting position, down and right to
the nearby door, up to the right corner door, and then down
to the bottom right door. The agent that solves the rightmost
Solarfox level in Figure 3c immediately begins moving left
(to avoid crashing into the wall) until it is between the three
clustered coins and has cleared the second wall fragment.
Once there, it moves down to pick up the bottom-most coin,
back up to pick up the upper coin, and then farther left to
pick up the third coin in the small cluster. Finally, it con-
tinues left until it is partially below the final coin and then
moves up to the final coin, thereby ending the game.

The claim that levels become harder over time is validated
with a curriculum extraction process from prior work by
Wang et al. (2020). For each experiment, one lineage leading
to a solved level was identified. Solved levels from the lin-
eage’s first 10%, middle 45-55%, and last 10% were then

Statistic dZelda multiDoor Solarfox
Duration 8 days 15 days 7 days
Loops / 2411 5000 3300
Generations
Total levels 768 1600 1056
Viable levels 684 1353 448
Solved levels 443 173 380
Transfer attempts 216900 450000 297000
Transfers 3705 8560 730

Table 2: PINSKY results across three different domains.

(a) singleDoor dZelda from seed to solved environment

(b) multiDoor dZelda lineage snapshots

(c) Solarfox lineage snapshots

Figure 3: Lineage Snapshots across 3 PINSKY experiments
with native GVGAI reward schemes, showing increasing
difficulty over evolutionary time.

randomly selected. The late-stage levels were optimized
with DE from scratch and given the same number of rollouts
as PINSKY. Direct DE optimization fails to solve late-stage
dZelda levels (verifying that they are nontrivially difficult),
but does solve “hard” Solarfox levels. The selected levels
were then concatenated into a curriculum, and ANNs were
optimized with DE to sequentially solve the easy, medium,
and then hard levels. The agent received the same amount
of optimization time as PINSKY does in each environment.
Results (Table 3) indicate that the ability to solve difficult
levels eventually tapers off even with the behavioral scaf-
folding of a curriculum. This result reconfirms the findings
of Wang et al. that transferring agents from their original en-
vironments into new ones is critical for POET-like systems.

Discussion
The results in the previous section show that even with a
small curriculum, agents cannot be optimized to solve harder



Experiment Easy Medium Hard
Solarfox X X X
singleDoor X X X
singleDoor aligned 1 X X X
singleDoor aligned 2 X X X
multiDoor X X X
multiDoor aligned X X X

Table 3: Levels solved using an extracted curriculum:
From each sample lineage (Figure 3) a PINSKY-solved easy,
medium, and hard level were randomly picked to form a
curriculum as in Enhanced POET (Wang et al. 2020). Then
optimization was performed using the extracted curriculum,
validating the necessity of transfer to solve difficult levels.

levels independent of the larger PINSKY algorithm. This re-
sult then begs an intriguing question: which components en-
able solving hard levels? Inspecting data from the original
PINSKY runs reveals that successful agents were frequently
transferred from levels they were not initially paired with,
highlighting the importance of periodic transfer attempts in
this coevolutionary system. However, the system still can-
not find agents that generalize to solve all generated levels,
suggesting that more core algorithm innovation is needed.

Evaluating PINSKY on domains with different reward
schemes additionally reveals important insights for design-
ing POET-like systems. In particular, the alignment of the re-
ward function with the task to be solved dramatically affects
agent performance. In dZelda, points are earned for complet-
ing the primary goal, but also for semi-related subtasks such
as killing monsters. Given enough time, the agent maximizes
its score by exclusively completing distracting subtasks. In-
versely, if a game has a non-distracting reward signal (like
bipedal walking), then PINSKY functions more like POET.

Over time, PINSKY tends to converge with respect to
solvability. To illustrate this phenomenon, consider a dZelda
level where the agent starts next to monsters. Agents can
(and do) solve such levels, but only via highly specific ac-
tions, i.e. instantly turning and attacking. Finding good ANN
weights then becomes a search for a needle in a haystack.
As levels of appropriate difficulty become rarer in the pop-
ulation, the relative optimization step frequency increases,
allowing new levels to be created sooner. However, because
1) level mutations add complexity more than removing it, 2)
agents are continually optimized, and 3) older (i.e. simpler)
agent-environment pairs are cut from the population before
newer ones, there is little incentive for evolving easier levels.

Despite the potential for convergence, the results in the
previous section demonstrate that PINSKY is capable of co-
generating lineages of increasingly complex game levels and
agents that can play them. That being said, the generated
levels are visibly different from human designs. For exam-
ple, PINSKY rarely builds contiguous walls. This particu-
lar idiosyncracy could be mitigated in an ad hoc manner by
modifying the evolutionary mutation operators. However, it
is interesting for the sake of building open-ended generative
systems to consider more bottom-up and domain-agnostic
incentives for meaningful design. One possible way to rec-

tify this situation might instead focus on increasing gener-
alizability of agent behaviors; although agents are evaluated
on multiple domains when domain transfers are attempted,
the system doesn’t explicitly reward solving multiple levels.

It is possible that adding more demanding incentives
could encourage the evolution of more challenging environ-
ments. This discussion raises the question of why we should
even bother generating ANNs when tree search algorithms
can already solve the types of Atari-style games explored in
this paper. However, using tree search agents would limit the
system to domains with a fast forward model available, ex-
cluding most interesting scenarios. The pursuit of generaliz-
able gameplay agents is also worthwhile in its own right, and
PINSKY may prove to be a useful tool in this regard. Ideally,
the combination of incremental agent optimization with pe-
riodic transfer of agents to new environments will result in
agents not having time to overfit to their respective environ-
ments, which is a phenomenon commonly observed in deep
RL (Cobbe et al. 2018). However, for the current approach to
be truly successful, network architectures or training meth-
ods that generalize better will likely need to be devised.

The pursuit of open-ended evolutionary and generative
processes has long been a goal of artificial life research, and
the experiments reported in this paper suggest that much can
be learned from cross-pollination between these historically
disconnected fields. For instance, experiments in a virtual
evolving world show that manipulating the minimal viabil-
ity criterion can speed or slow evolution (Soros, Cheney, and
Stanley 2016). Similarly adjusting the viability criterion in
a POET-like system would be interesting from an evolution-
ary dynamics perspective because of the complex interac-
tions between the level generator and the optimizer. It should
additionally be noted that the GVGAI framework explicitly
makes possible the evolution of game mechanics, offering
another promising avenue for future work with PINSKY.

Conclusion
This paper adapted the coevolutionary POET algorithm to
simultaneously generating game levels and agents that can
solve them. Adapting the algorithm to games from its origi-
nal bipedal walker domain required innovations with respect
to key differences from the original algorithm and domain,
including enabling more complex environments, giving new
kinds of information to gameplay agent controllers, and hav-
ing an extremely sparse reward function. Results on a lim-
ited number of runs demonstrate that the system can, in fact,
be adapted to co-generate game levels and game-playing
agents while nonetheless illuminating future directions for
making the generated levels both more difficult and more
solvable. However, it appears that the failure of the trained
deep networks to generalize cannot be overcome only by
transferring agents from one game level to another.

Acknowledgements
This work was supported by the National Science Founda-
tion. (Award number 1717324 - “RI: Small: General Intelli-
gence through Algorithm Invention and Selection.”).



References
Arulkumaran, K.; Cully, A.; and Togelius, J. 2019. Alphas-
tar: An evolutionary computation perspective. Proceedings
of the Genetic and Evolutionary Computation Conference
Companion on - GECCO ’19.
Browne, C., and Maire, F. 2010. Evolutionary game design.
IEEE Transactions on Computational Intelligence and AI in
Games 2(1):1–16.
Cobbe, K.; Klimov, O.; Hesse, C.; Kim, T.; and Schulman, J.
2018. Quantifying generalization in reinforcement learning.
arXiv preprint arXiv:1812.02341.
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems.
Hansen, N. 2007. The cma evolution strategy: A comparing
review. Towards a new evolutionary computation. Studies in
Fuzziness and Soft Computing 192:75–102.
Justesen, N.; Torrado, R. R.; Bontrager, P.; Khalifa, A.; To-
gelius, J.; and Risi, S. 2018. Illuminating generalization in
deep reinforcement learning through procedural level gener-
ation.
Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2020.
Deep learning for video game playing. IEEE Transactions
on Games 12(1):1–20.
Lehman, J., and Stanley, K. 2010. Revising the evolutionary
computation abstraction: Minimal criteria novelty search.
103–110.
Lehman, J., and Stanley, K. O. 2011. Abandoning objec-
tives: Evolution through the search for novelty alone. Evo-
lutionary computation 19(2):189–223.
Nelson, M. J. 2016. Investigating vanilla mcts scaling on
the gvg-ai game corpus. In 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG), 1–7.
Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. General video game evaluation using relative algo-
rithm performance profiles. In European Conference on
the Applications of Evolutionary Computation, 369–380.
Springer.
OpenAI; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.;
Debiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.;
Hesse, C.; Jozefowicz, R.; Gray, S.; Olsson, C.; Pachocki, J.;
Petrov, M.; de Oliveira Pinto, H. P.; Raiman, J.; Salimans, T.;
Schlatter, J.; Schneider, J.; Sidor, S.; Sutskever, I.; Tang, J.;
Wolski, F.; and Zhang, S. 2019. Dota 2 with large scale deep
reinforcement learning.
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; To-
gelius, J.; and Lucas, S. M. 2018. General video game ai:
a multi-track framework for evaluating agents, games and
content generation algorithms.
Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; and Sutskever, I.
2017. Evolution strategies as a scalable alternative to rein-
forcement learning.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.

Sehnke, F.; Osendorfer, C.; Rückstieß, T.; Graves, A.; Peters,
J.; and Schmidhuber, J. 2010. Parameter-exploring policy
gradients. Neural Networks 23:551–559.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Springer.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484–503.
Soros, L. B.; Cheney, N.; and Stanley, K. O. 2016. How
the strictness of the minimal criterion impacts open-ended
evolution. In Proceedings of the Artificial Life Conference
2016. MIT Press.
Stanley, K. O.; Lehman, J.; and Soros, L. 2017. Open-
endedness: The last grand challenge you’ve never heard of.
Storn, R., and Price, K. 1995. Differential evolution: A
simple and efficient adaptive scheme for global optimization
over continuous spaces. Journal of Global Optimization 23.
Togelius, J., and Schmidhuber, J. 2008. An experiment in
automatic game design. In 2008 IEEE Symposium On Com-
putational Intelligence and Games, 111–118. IEEE.
Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games 3(3):172–186.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J. P.; Jaderberg, M.;
Vezhnevets, A. S.; Leblond, R.; Pohlen, T.; Dalibard, V.;
Budden, D.; Sulsky, Y.; Molloy, J.; Paine, T. L.; Gulcehre,
C.; Wang, Z.; Pfaff, T.; Wu, Y.; Ring, R.; Yogatama, D.;
Wünsch, D.; McKinney, K.; Smith, O.; Schaul, T.; Lillicrap,
T.; Kavukcuoglu, K.; Hassabis, D.; Apps, C.; and Silver, D.
2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575(7782):350–354.
Wang, R.; Lehman, J.; Clune, J.; and Stanley, K. O. 2019.
POET: Open-ended coevolution of environments and their
optimized solutions. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO ’19, 142–151.
ACM.
Wang, R.; Lehman, J.; Rawal, A.; Zhi, J.; Li, Y.; Clune, J.;
and Stanley, K. O. 2020. Enhanced poet: Open-ended rein-
forcement learning through unbounded invention of learning
challenges and their solutions.
Yannakakis, G. N., and Togelius, J. 2018. Artificial intelli-
gence and games. Springer.


